返回首页

变频器高压(高压变频器的工作原理及作用)

来源:www.xrdq.net   时间:2023-01-30 07:01   点击:176  编辑:admin   手机版

1. 高压变频器的工作原理及作用

高压变频器具有高度智能化运算水平和完善的故障检测电路,并能对所有的故障提供精确的定位,在主控界面上做出明确的指示。在实际的运用中我们发现,常见的故障可分为控制通道异常、IGBT过流,过电压故障等等。这里就常见的高压变频器故障及产生的原因和高压变频器维修的方法进行分析。

  一、控制通這异常故障

  控制通道异常故障通常由子PWM板与功率单元板之间的光纤通信造成的, 一般由以下几种情况:

  1、光纤连接部位接触不良或光纤头脱落;

  2、光纤信号发送/接收器内部進积灰生;

  3、光纤折断;

  4、光纤通信控制振损坏;

  在出现光纤故障的情况下,首先需要判断是功率单元故障还是控制器侧出现故障,可以通过对调光纤的方法进行判断。将在控制器中光纤板上得同一相得任意一个功率单元对应的光纤与报故障的光纤进行对调,再次上电监控界面定位的光纤故障如果仍然在原位置,说明是光纤板损坏,反之,监控界面显示的光纤故障已经更换位置,则说明是功率单元故障,此时可以考虑更换或维修故障功率单元。

2. 高压变频器的工作原理是什么

移相变压器是整流变压器的一种。在高压变频器特别是二象限运行的高压变频器中得到广泛应用,因为采用移相变压器实现多重化技术,可以极大地抑制谐波污染。

一般三相整流器整出的直流电压为6脉波,如果采用六相整流(交流侧两个三相互差30度相角)这样整出的直流电即为12脉波,直流纹波系数大大减小,且交流侧谐波也大大减小。

3. 高压变频器的工作原理及作用是什么

1 西门子变频器的工作原理

我们知道,交流电动机的同步转速表达式位:

n = 60 f(1 - s)/p (1)

式中 n——— 异步电动机的转速;

f——— 异步电动机的频率;

s——— 电动机转差率;

p——— 电动机极对数。

由式 (1) 可知,转速 n 与频率 f 成正比,只要改变频率 f 即可改变电动机的转速,当频率 f 在 0 ~ 50Hz 的范围内变化时,电动机转速调节范围非常宽。西门子变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的率、高性能的调速手段。

2 西门子变频器控制方式

低压通用变频输出电压为 380 ~ 650V ,输出功率为 0.75 ~ 400kW ,工作频率为 0 ~ 400Hz ,它的主电路都采用交 — 直 — 交电路。其控制方式经历了以下四代。

2.1U/f=C 的正弦脉宽调制( SPWM )控制方式

其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出zui大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

2.2 电压空间矢量( SVPWM )控制方式

它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

2.3 矢量控制( VC )方式

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流 Ia 、 Ib 、 Ic 、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1 ,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流 Im1 、 It1 ( Im1 相当于直流电动机的励磁电流; It1 相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

西门子变频器工作原理

西门子变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元驱动单元、检测单元微处理单元等组成的。

1. 电机的旋转速度为什么能够自由地改变?

*1: r/min

电机旋转速度单位:每分钟旋转次数,也可表示为rpm.

例如:2极电机 50Hz 3000 [r/min]

4极电机 50Hz 1500 [r/min]

结论:电机的旋转速度同频率成比例

本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和 频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值 来调整电机的速度。

另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。

因此,以控制频率为目的的西门子变频器,是做为电机调速设备的优选设备。

n = 60f/p

n: 同步速度

f: 电源频率

p: 电机极对数

结论:改变频率和电压是zui优的电机控制方法

如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此西门子变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,zui高只能是等于电机的额定电压。

例如:为了使电机的旋转速度减半,把西门子变频器的输出频率从50Hz改变到25Hz,这时西门子变频器的输出电压就需要从400V改变到约200V

4. 变频器的工作原理图详细讲解

1、高压变频器的构成:内部是由十八个相同的单元模块构成,每六个模块为一组,分别对应高压回路的三相,单元供电由移相切分变压器进行供电。2、功率单元构成:功率单元是一种单相桥式变换器,由输入切分变压器的副边绕组供电。

3、经整流、滤波后由4个IGBT以PWM方法进行控制,产生设定的频率波形。变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计。其控制通过光纤发送。4、来自主控制器的控制光信号,经光/电转换,送到控制信号处理器,由控制电路处理器接收到相应的指令后,发出相应设的IGBT的驱动信号,驱动电路接到相应的驱动信号后,发出相应的驱动电压送到IGBT控制极,操作IGBT关断和开通,输出相应波形。

5、功率单元中的状态信息将被收集到应答信号电路中进行处理,集中后经电/光转换器变换,以光信号向主控制器发送。二、高压变频器运行原理:1、高压变频器的每个功率单元相当于一个三电平的二相输出的低压变频器,通过叠加成为高压三相交流电

2、变频器中点与电动机中性点不连接,变频器输出实际上为线电压,由A相和B相输出电压产生的UAB输出线电压可达6000V3、多电平单元串联叠加高压变频器在运行后,将输入的工频的三相高压交流电转化为可以进行频率可调节的三相交流电,其电压和频率按照V/F的设定进行相应的调节,保持电机在不同的频率下运行4、在变频器输入侧,由于变频器多个副边绕组的均匀位移,如6KV输出时共有+250、+150、+50、-50、-150、-250共6种绕组,变频器原边电流中对应的电流成分也相互均匀位移,构成等效36脉动整流线路

5、工作时的功率因数达0.95以上,不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,对同一电网上运行的电气设备没有任何干扰

5. 高压变频器的工作原理及作用视频讲解

变频器的参数设定的方法:

步骤一:启动频率,此参数用来设定启动时,电机从多少频率开始运转。

步骤二:运行频率,根据生产情况,调节好点击运转后的旋转频率。

步骤三:频率上下限,避免用户误操作,使频率过高烧坏电机。

步骤四:面板调速,可以通过面板的按键调节频率。

步骤五:传感器控制,可以通过传感器的电压或电流变化作为信号输入来控制频率。

步骤六:通讯输入,与PLC等上位机控制其频率。

步骤七:加速时间是从启动频率到运行频率的时间。

步骤八:减速时间可以设定电机从运行频率到停止所需的时间。

步骤九:电机参数设定可根据使用电机铭牌的额定电压与额定电流在变频器中设定参数与其对应。

扩展资料

变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

6. 高压变频器的工作原理图

交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。

7. 高压变频器结构及原理

高压变频器有几部分组成

  主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IPM逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接影响到变频器的使用寿命,一般温度每上升10 ℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。

  在电容器维护时通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时应考虑更换电解电容器。

  高压变频器的工作原理

  按照电机学的基本原理,电机的转速满足如下的关系式:n=(1一s)60f/p=n。×(1一s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出, 电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s一般情况下比较小(0-0.05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f,就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。

  将单相或三相交流电先经过整流电路变成直流电,将整流后的直流电加到高频开关电路上,通过控制电路控制开关电路的通断时间,随着开关电路的通断变化就会在输出端产生频率可变的交流电

顶一下
(0)
0%
踩一下
(0)
0%