返回首页

风力发电机组变频器故障原因

来源:www.xrdq.net   时间:2023-07-20 08:42   点击:248  编辑:admin   手机版

一、风力发电机组变频器故障原因

(1)测量风机电源电压是否正常,如风机电源不正常,首先要修好风机电源。

(2)确认风机电源正常后风机如不转或慢转,则风机已损坏,需更换。

损坏原因查找

(1)风机本身质量不好,线包烧毁、局部短路,直至风机的电子线路损坏,或风机引线断路、机械卡死、含油轴承干涸、塑料老化变形卡死。

(2)环境不良,有水汽、结露、腐蚀性气体、脏物堵塞、温度太高使塑料变形。

1.4.3风机的更换

(1)更换新风机最好选择原型号或比原型号性能优越的风机,同样尺寸的风机包含很多种风量和风压品种。

(2)风机的拆卸有很多情况要牵动变频器内部机芯,在拆卸时要做好记录和标识,防止装回原样时发生错误。有的设计已充分考虑到更换方便性,此时要看清楚,不要盲目大拆、大动。

(3)风机在安装螺钉时,力矩要合适,不要因过紧而使塑料件变形和断裂,也不能太松而因振动松脱。风机的风叶不得碰风罩,更不得装反风机。

(4)选用风机时注意风机轴承是滚珠轴承的为好,含油轴承的机械寿命短。就单纯轴承寿命而言,使用滚珠轴承时风机寿命会高5耀10 倍。

(5)风机装在出风口承受高温气流,其风叶应用金属或耐温塑料制成,不得使用劣质塑料,以免变形。

(6)电源连接要正确良好,转子风叶不得与导线相摩擦,装好后要通电试一下。

(7)清理风道和散热片的堵塞物很重要,不少变频器因风道堵塞而发生过热保护或损坏。

二、风力发电机组变频器接线图

变频器电机接线方法:

1、电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。

2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。

3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。

4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。因此,最大布线长度要小于规定值。不得已布线长度超过时,要把Pr.156设为1。

5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。否则将导致变频器故障或电容和浪涌抑制器的损坏。

6、为使电压降在2%以内,应使用适当型号的导线接线。变频器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的电压下降而导致电机的转矩下降。

7、运行后,改变接线的操作,必须在电源切断10min以上,用万用表检查电压后进行。断电后一段时间内,电容上仍然有危险的高压电。

三、风力发电机组变频器未同步

首先要确定两条输送机的速度要求是否很严格(有严格的相对位置要求),如果没有可采用以下方案:

1.用一个双联电位器同时调两个变频器,其中一个再加一个电位器调一下两个之间的比例。

2.用一个电位器控制其中一个变频器,再用这个变频器的模拟输出,控制另一台变频器,中中间加一个电位器调比例。

3.要求再高一点,可以用2的方法,将中间的哪个电位器换成专用的比例控制器。更安全和可靠,并且比例可以在0--200%中精确调节.

另外,精确位置的方法:

用一个电位器,控制前面哪个。后面哪个用同步跟踪速度和位置。(差一点用PLC(或专用控制板)+位置传感器(可以是各种接近开关+凸轮),两个都要有,好一点用旋转变码器,对于相对位置要求严的还可以用相位控制电机)。

四、风力发电机组变频器的作用

风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。

各主要组成部分功能简述如下:

(1)叶片 叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。

(2)变浆系统 变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。

(3)齿轮箱 齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。

(4)发电机 发电机是将叶轮转动的机械动能转换为电能的部件。转子与变频器连接,可向转子回路提供可调频率的电压,(金属加工真不错)输出转速可以在同步转速±30%范围内调节。

(5)偏航系统 偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。

(6)轮毂系统 轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。

(7)底座总成 底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。

五、风力发电机组变频器工作流程

变频器是一种电力调节设备,它可以将固定频率的交流电转换为可调频率的交流电,从而实现对电机转速的精确控制。变频器的控制原理主要包括以下几个方面:

1. 电压变频控制:变频器通过控制输出电压的频率和幅值来实现对电机转速的控制。当变频器输出的频率和电压与电机的额定频率和电压相匹配时,电机可以正常运转。

2. 矢量控制:矢量控制是一种高级的变频器控制技术,它可以实现对电机的转速、转矩和位置的精确控制。矢量控制通过对电机的电流、电压和位置进行测量和计算,实现对电机的精确控制。

3. PWM控制:PWM控制是一种常用的变频器控制技术,它通过对输出电压进行脉宽调制,实现对电机转速的控制。PWM控制可以使输出电压的变化更加平滑,从而减少电机的噪声和振动。

4. PID控制:PID控制是一种常用的闭环控制技术,它可以实现对电机转速的精确控制。PID控制通过对电机转速进行测量和反馈,计算出误差信号,并通过比例、积分和微分控制来调节输出电压,从而实现对电机转速的控制。

总之,变频器的控制原理是通过对输出电压的频率、幅值和相位进行调节,实现对电机转速、转矩和位置的精确控制。

六、风力发电机组变频器原理

变频器PID控制原理是一种常见的控制方法,主要用于控制变频器的输出频率,从而实现对电机的转速控制。PID控制器由三个部分组成:比例(P)、积分(I)和微分(D)。

P部分:比例控制器根据设定值和实际值的差异,将产生一个与误差成正比例的输出信号,其作用是增加电机的输出电压和频率。

I部分:积分控制器则根据设定值与实际值的误差,将产生一个与误差积分值成正比例的输出信号,其作用是消除静态误差,使系统达到稳态。

D部分:微分控制器则根据设定值与实际值的变化率,将产生一个与变化率成正比例的输出信号,其作用是消除瞬态误差,使系统达到快速响应。

PID控制器将比例、积分和微分三个部分的输出信号相加,得到一个最终的控制信号,从而实现对电机输出频率的精确控制。当设定值与实际值的误差较小时,比例控制器起主要作用;当误差较大时,积分和微分控制器起主要作用。

需要注意的是,变频器PID控制需要根据实际情况进行参数调整,以确保控制系统的稳定性和响应速度。此外,在实际应用中还需要考虑电机的特性、负载变化等因素,以确保系统的可靠性和稳定性。

七、风力发电机组变频器功率单元作用

功率模块,也叫逆变模块,其作用是将输入模块的直流电压通过其内部的IGBT的开关作用转变成驱动电机的三相交流电源。

变频器运转频率的高低完全由功率模块所输出的工作电压的高低来控制,功率模块输出的电压越高,变频器运转频率及输出功率越大。反之变频器运转频率及输出功率越低。

八、风力发电机组变频器工作原理

变频器的工作原理?

答:变频器的英文名称为VFD或VVVF,它是一种将电压和频率(50HZ)不变的工频电,利用半导体器整流和逆变器技术将它变成可变电压或频率的交流电装置。

对于常用VVVF 或SPWM变频或矢量控制变频器,首先是把50HZ交流电通过三相桥式整流器整流,转换或直流电源,然后用电容滤波,送入逆变模块IGBT(直流变交流)、制动单元、驱动单元、检测单元、微处理单元。见下图所示。

按照用途它可以分为通用变频器和专用变频器两大类;通用变频器是指它在很多方面具有通用性,该类变频器简化了一些系统功能,达到以节能为主要目的,多为中小容量变频器,专用变频器指针对某一方面或某一领域而设计研发的变频器。

其中变频器又可分为电压型和电流型二种。见下图所示。

①电压型变频器是将电压源的直流转换为交流,它的直流回路中的滤波为电解电容。

②电流型变频器则是将电流源的直流变换为交流,其直流回路滤波是电感。控制其输出的量值和波形。实际上就是能量的大小用脉冲的幅度来表示,整流输出电路中增加绝缘删双极型晶体管(IGBT),通过对该 IGBT 的控制改变整流电路输出的直流电压幅度(140~390V),这样变频电路输出的脉冲电压不但宽度可变,而且幅度也可变。

PWM是 Pulse Width Modulation(脉冲宽度调制)的缩写。PWM 变频器同样是按照一定规律对脉冲列的脉冲宽度进行调制,控制其输出量和波形。实际上就是能量的大小用脉冲宽度来表示,此种驱动方式,整流电路输出的直流供电电压基本保持不变,变频器功率模块的输出电压幅度恒定,控制脉冲的宽度受微处理器控制。

工业常用的变频器是在改变输出频率的同时,也改变输出电压值(V/F方式),这种控制模式最大的优点是保证调频下降后不使电机发热烧坏。如果此时仅仅改变频率电压不变,特别是0HZ逐升或降速到10HZ左右,会引起电机电流超过额定值发热烧坏电机。例如;将变频电机旋转速度由60HZ调减到30HZ时,此时变频器的输出电压就会从380V下降到200V左右。

以上为个人观点,仅仅简单地了解了变频器的部分功能,变频器中的学问很深,本人才疏学浅,也不可能讲得十分清楚。仅供提问者和头条上的阅读

九、风力发电机组变频器的作用是什么

回答如下:变频器是一种用于控制交流电机转速的装置,通过调节电机的供电频率和电压来实现对电机转速的精确控制。在实际中,变频器广泛应用于各种领域,包括以下几个方面:

1. 工业生产:变频器可以用于工业生产中的各种电机驱动系统,如水泵、风机、压缩机、输送带等。通过调节电机转速,可以实现能耗的节约和生产效率的提高。

2. 空调系统:变频器可以用于空调系统中的压缩机驱动,通过调节压缩机转速来控制冷却效果和功耗,实现空调系统的节能运行。

3. 电梯系统:变频器可以用于电梯系统中的电机驱动,通过精确调节电机转速和运行曲线,实现电梯平稳运行和能耗的降低。

4. 电动车辆:变频器可以用于电动车辆中的电机驱动,通过调节电机转速和扭矩,实现车辆的动力输出和能量回收。

5. 太阳能发电系统:变频器可以用于太阳能发电系统中的逆变器控制,将直流电转换为交流电,并调节输出电压和频率,以适应电网要求。

总之,变频器在各个领域中都有广泛的应用,可以实现对电机转速的精确控制,提高能效、降低能耗,同时也提升了设备的运行稳定性和可靠性。

顶一下
(0)
0%
踩一下
(0)
0%
上一篇:返回栏目