返回首页

电源如何实现调流?又如何搭建电路呢?

来源:www.xrdq.net   时间:2023-10-13 04:40   点击:124  编辑:admin   手机版

一、电源如何实现调流?又如何搭建电路呢?

电源一般分为交流电源,直流电源。

这两种电源一般都会要求稳定的电压输出,这样才能保证电源的用电器正常工作。

一、稳压电源的分类

常用的稳压电源有:①铁磁谐振式交流稳压器。由饱和扼流圈与相应的电容器组成,具有恒压伏安特性。②磁放大器式交流稳压器。将磁放大器和自耦变压器串联而成,利用电子线路改变磁放大器的阻抗以稳定输出电压。③滑动式交流稳压器。通过改变变压器滑动接点位置稳定输出电压。④感应式交流稳压器。靠改变变压器次、初级电压的相位差,使输出交流电压稳定。⑤晶闸管交流稳压器。用晶闸管作功率调整元件。稳定度高、反应快且无噪声。但对通信设备和电子设备造成干扰。20世纪80年代以后,又出现3种新型交流稳压电源:补偿式交流稳压器。数控式和步进式交流稳压器。净化式交流稳压器。具有良好隔离作用,可消除来自电网的尖峰干扰。

1、交流电源

又称交流稳压器。随着电子技术的发展,特别是电子计算机技术应用到各工业、科研领域后,各种电子设备都要求稳定的交流电源供电,电网直接供电已不能满足需要,交流稳压电源的出现解决了这一问题。

常用的交流稳压电源有:

①铁磁谐振式交流稳压器。由饱和扼流圈与相应的电容器组成,具有恒压伏安特性。

②磁放大器式交流稳压器。将磁放大器和自耦变压器串联而成,利用电子线路改变磁放大器的阻抗以稳定输出电压。

③滑动式交流稳压器。通过改变变压器滑动接点位置稳定输出电压。

④感应式交流稳压器。靠改变变压器次、初级电压的相位差,使输出交流电压稳定。

⑤晶闸管交流稳压器。用晶闸管作功率调整元件。稳定度高、反应快且无噪声。但对通信设备和电子设备造成干扰。20世纪80年代以后,又出现3种新型交流稳压电源:补偿式交流稳压器。数控式和步进式交流稳压器。净化式交流稳压器。具有良好隔离作用,可消除来自电网的尖峰干扰。

⑥数控稳压电源:是通过观察区在设备输出端取样,对现时电压跟额定电压作出比较、核对,如比较为负值,则发送数据到中央处理器(CPU),由中央处理器作出电压加的命令。同时,检测区检测半导体是否已开、关。确认无误后,中央处理器做出电压加的命令控制半导体工作,从而达到额定电压的标准。如果正值,中央处理器则做出电压减的命令,整个过程全部数字化只需0.048秒时间。电路将瞬间反复变化的电压通过数字控制回路稳定来确保输出电压始终为额定电压。

采用数码式控制原理监控电压的变化,通过电子晶闸开关调整变压器的TAP来始终保持稳定的输出电压的数码式电源稳压器(DIGITAL TAPCHANGING METHOD)。

2、直流电源

又称直流稳压器。它的供电电压大都是交流电压,当交流供电电压的电压或输出负载电阻变化时,稳压器的直接输出电压都能保持稳定。稳压器的参数有电压稳定度、纹波系数和响应速度等。前者表示输入电压的变化对输出电压的影响。纹波系数表示在额定工作情况下,输出电压中交流分量的大小;后者表示输入电压或负载急剧变化时,电压回到正常值所需时间。直流稳压电源分连续导电式与开关式两类。前者由工频变压器把单相或三相交流电压变到适当值,然后经整流、滤波,获得不稳定的直流电源,再经稳压电路得到稳定电压(或电流)。这种电源线路简单、纹波小、相互干扰小,但体积大、耗材多,效率低(常低于40%~60%)。后者以改变调整元件(或开关)的通断时间比来调节输出电压,从而达到稳压。这类电源功耗小,效率可达85%左右,但缺点是纹波大、相互干扰大。所以,80年代以来发展迅速。从工作方式上可分为:

①可控整流型。用改变晶闸管的导通时间来调整输出电压。

②斩波型。输入是不稳定的直流电压,以改变开关电路的通断比得到单向脉动直流,再经滤波后得到稳定直流电压。

③变换器型。不稳定直流电压先经逆变器变换成高频交流电,再经变压、整流、滤波后,从所得新的直流输出电压取样,反馈控制逆变器工作频率,达到稳定输出直流电压的目的。

电器用途

交流稳压电源应用于计算机及其周边装置、医疗电子仪器、通讯广播设备、工业电子设备、自动生产线等现代高科技产品的稳压和保护。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。

(1)可用于各种电子设备老化,如PCB板老化,家电老化,各类IT产品老化,CCFL老化,灯管老化。

(2)适用于需要自动定时通、断电,自动记周期数的电子元件的老化、测试。

(3)电解电容器脉冲老化。

(4)电阻器,继电器,马达等测试老化。

(5)整机老化;电子元器件性能测试,例行试验。

3、逆变电源

所谓逆变式稳压电源也叫变频电源, 一般变频电源采用处理器控制、高频PWM设计、IGBT或者其他原件推动.效率达85%以上。反应快速,对100%除载/加载,稳压反应时间在 2ms以内。本变频电源超载能力强,瞬间电流能承受额定电流的300%。波形纯正,频率高稳定,不产生干扰磁波(EMI、EMC)。变频电源不但是研发和实验室,计量室的最佳电源,也是EM/EMC/安规测试的标准电源。

一般变频电源具有负载适应性强、效率高,稳定度佳,输出波形品质好、操作简便、体积小、重量轻的特点。通常变频电源针对世界各地不同电源种类,使用者不仅可以模拟其电压和频率(47~63Hz)作测试应用;其中按国家军标特制的中频电源还可以支援400Hz频率的国防军事侦测、航空电子及航海、通讯等应用设备。

通常变频电源不管是纯阻性,容性,电感性或非线性负载均可长期正常使用。三相可单相使用。可带负载调节电压和频率。

二、关于电源的调流

    通常都是用来调整电源的阻抗来实现电源的调流的。

 

三、关于搭建电路

   不同的电源,需要不同的电路结构,搭建电路的时候,要根据电路结构选择合适的电路元器件,这要考虑电容元器件的耐压、容量;二极管元器件的耐压、额定电流;稳压二极管的稳压值、额定电流;三极管元器件的通频带、放大倍数、集电极和发射极之间的耐压;电阻元器件的功率等;各类集成块的参数,各类变压器的容量、频率等,以及各个元器件之间的电磁干扰,搭建成功之后还要进行各类测试。

二、厂用电源分类?

工厂电气设备类型颇多,按电气器件电源的性质来分类,大致可分为:弱电类电气控制设备、强电类电气控制设备和强、弱二者兼有的电气控制设备三大类。

弱电类电气控制设备主要由晶体管、集成块、电阻、电容、电感等组成的电路控制设备运行,这些电气器件通过整流将交流变成直流来供电,而且往往电压较低、较弱,故称为弱电类控制设备.这类设备主要有无级调速车床、仿形铣床和各类数控机床等等。

强电类电气控制设备中的电气器件多为交流接触器、中间继电器、时间继电器、速度继电器以及开关、熔断器等组成的继电接触控制系统驱动设备运行.这类设备如通用的车床、铣床、刨床、磨床、钻床、剪床、割床等金属切削设备;吊车、起重机等卷扬设备;烘箱、干燥箱、盐浴炉、碱浴炉等电热设备;交流电焊机、直流电焊机等焊接设备以及其他非标准自制设备.这些常用设备使用的电源是220V或380v正弦交流电,电源较强,故称为强电类设备。

强电弱电二者兼有的电气设备较多,其中一部分电路采用强电类继电接触控制,往往拖动较大功率交流电动机,另一部分采用弱电类控制,拖动直流电动机及其控制电路,这种控制综合了前两者的优点。

三、34kvA机床配多大稳压器?

34kvA机床配80-100KVA的三相交流稳压器

看负载了,如果是电动机之类的感性负载,那么最好是配80-100KVA的三相交流稳压器,如果是一般普通负载,配50KVA的就可以了

交流稳压电源是以输出视在功率(kVA)为标称额定容量,而一般情况下负载都不是纯电阻性的,即功率因数COS¢≠1,稳压器实际能输出的有功功率kW=容量(kVA)×COS¢。所以在实际选型时要按用电设备的额定功率、功率因数和负载类型等具体情况来合理选择稳压电源,其输出功率应留有适当余量,特别是冲击性负载选型时余量要更大。

四、数控直流稳压电源发展史?

稳压电源的发展历史

稳压电源的历史可追溯到十九世纪,爱迪生发明电灯时,就曾考虑过稳压器,到二十世纪初,就有铁磁稳压器以及相应的技术文献,电子管问世不久,就有人设计了电子管直流稳压器。在四十年代后期,电子器件与磁饱和元件相结合,构成了电子控制的磁饱和交流稳压器。五十年代晶体管的诞生使晶体管串联调整稳压电源成了直流稳压电源的中心。六十年代后期,科研人员对稳定电源技术做了新的总结,使开关电源,可控硅电源得到快速发展,与此同时,集成稳压器也不断发展。

直至今日,在直流稳压电源领域,以电子计算机为代表的要求供电电压低,电流大的电源大都由开关电源担任,要求供电电压高,电流大的设备的电源由可控硅电源代之,小电流、低电压电源都采用集成稳压器。

在交流稳压电源领域,铁磁谐振式和电子反馈调控式这两类技术也在不断发展。铁磁谐振式的发展历程大致如下:

二十世纪五十年代:磁饱和稳压器→六、七十年代:磁泄放式恒压变压器(CVT)→八十年代中期:运用磁补偿形式的第1代参数稳压器→九十年代中期:第2代参数稳压器→二十世纪初:第3代参数稳压器。电子反馈调控式的发展历程大致如下:二十世纪五十年代:电子管调控磁放大式(614)型交流稳压器→六、七十年代:电子调控自耦滑动式(SVC)交流稳压器,自动感应式调节稳压器→八十年代中期:电子调控的有触点补偿式交流稳压器,正弦能量分配器式净化电源→九十年代中期:数控有级的无触点补偿式交流稳压器,改进型的第2、3代净化电源→二十一世纪初:利用逆变器作补偿的无级、无触点补偿式交流稳压器、新型的净化稳压电源

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片
上一篇:返回栏目
热门图文