一、双向控制电路原理图?
就是在两个不同的地方,可以控制一个用电器的开;关,启;停。
二、稳压罐工作原理图?
用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。气压罐是水泵可以进入睡眠的前提条件,利用水的压缩性极小的性质,用外力将水储存在罐内,气体受到压缩压力升高,当外力消失压缩气体膨胀可将水排除。由于水的压缩比远远小于气体,当管网有小流量的泄漏可造成压力大幅度的下降,可使水泵频繁启动。如工频泵直接向用户供水,就必需配备气压罐,缓解水泵频繁启动。
三、稳压开关电源参数?
额定输出电压,额定输出最大电流,电压稳定度,纹波系数等
四、开关电源稳压公式?
可如下计算:首先要知道稳压管的稳定电流阻值=(电源电压-稳压值)/ 稳压管的稳定电流比如稳压管的稳定电流是30MA,(6-5.1)/0.03=30欧姆.如果阻值偏小,稳压管功耗增加,工作不良还可能会损坏(主要是空载时)。
如果阻值偏大,输出电流下降。稳压管的稳定电流应大于负载的最大电流。因为一般的稳压管稳定电流不大,所以只能用于小电流的负载。如果负载是不会开路的且较稳定的,阻值可以适当选小。
五、数字开关电源原理图?
高斯贝尔GSR-2001E数字机开关电源主要由干扰抑制、整流滤波、开关振荡、稳压、保护等电路组成。220V交流电源经过电源开关和保险管进入由C23、L5和C1、L6组成的干扰抑制滤波器,再经桥式整流、滤波后得到300V直流电压。300V直流电压一路经开关变压器①-②绕组产生感应电动势,由于绕组间的电磁耦合,在③-④绕组上产生感应电压,感应电压经R5使VQ2导通,进而使场效应开关管VQ1的栅极电压短路至地,此时VQ1截止,完成一个振荡周期。保护电路主要有TH1和由C4、R8、VD6组成的尖峰吸收电路,TH1是一个负温度系数热敏电阻元件,位于整流电路后振荡电路之前,当电源则接收瞬间,TH1的温度较低,阻值较大,限制了电路的启动电流,减少瞬间电流对其他电路的冲击;当电路接通后,TH1温度升高,电阻变小,电路转入正常工作。尖峰吸收电路用于吸收开关变压器漏感产生的尖峰电压,起到保护开关管的作用。该机的稳压电路主要由光电耦合器U1和电流比较放大器U2及外围元件组成。当某种原因使输出电压升高时,连接在3.3V电源支路的取样电阻R15和R16、RV1分压处的电压随之升高,电流比较放大器U2的控制端R电位也随之升高,与U2内部的基准电压进行比较,通过改变输出端电压来增加光电耦合器U1中的发光二极管亮度,使光敏三极管导通,进而使VQ2导通,将VQ1栅极电压短路至地,VQ1截止,开关变压器次级各绕组输出电压下降。当电压降低时,其稳压过程与上述过程相反,从而稳定了输出电压。
六、串联直流稳压电路原理图?
串联型直流稳压电源电路是通过改变调整三DSP2A-5V(60303X)极管的导通程度来达到稳定输出电压的目的。调整三极管进行调整的程度既受调整管本身放大倍数的影响,又受控制信号大小的影响。前面所讲的简单串联型直流稳压电路直接以输出直流电压与基准电压之间的差值作为调整控制信号,这个控制信号反映的是输出直流电压本身的偏差AUo,如果木用AUo直接去控制调整管工作,而是先把△乩放大一定倍数以后再去控制调整管工作,很小的△砜就能产生很大的控制信号。也就是说,只要输出电压Uo略微偏离正常值,调整管就能产生很强烈的调整作用,使Uo恢复到正常值。这样的稳压电路能够产生很好的稳压效果,因而成为线性稳压电源中应用基准电压最广泛的一种电路模式。下面介绍一种带有放大环节的串联型直流稳压电路。
图5-41是这种直流稳压电源的原理图。电阻Ri、R2和电位器RP串联组成的分压器构成信号取样电路,将输出电压Uo的变化情况按一定的分压比取出一部分,提供给比较放大器与基准电压随时进行比较。电阻R3与稳压二极管VZ组成一个基准电压源,保证比较放大三极管VT2的发射极电压保持稳定,并以此电压作为衡量输出电压乩高低的标准。限流电阻飓为稳压二极管VZ提供适当的稳定工作电流,使之工作在稳定电压范围内。比较放大管VT2及其集电极负载电阻R4构成比较放大电路。取样电压与基准电压分别加到三极管VT2的基极与发射极,两电压之间的差值(称为误差电压)Ube2被三极管VT2放大后送到调整三极管VT1的基极,通过对三极管VT1基极屯流的控制来调整稳压电路的输出直流电压。调整管VT1的作用与前面简单串联型稳压电路中的调整管一样,起到可变电阻调节输出电压的作用。电阻凰同时也是三极管VT1的基极偏置电阻
七、开关电源稳压电路原理?
稳压电源是使用电子电路调整输出电压达到稳定目的的电源,有串联型稳
压电源、
并联型稳压电源、
开关稳压电源,
开关电源也是稳压电源,
但稳压电源
不能直接称为开关电源。
普通的串联稳压电源都安装电源变压器,
具有输出电压稳定、
波纹小等优点,
但是电压范围小,效率低。
并联稳压电源输出电压特别稳定,但是负载能力很
差,一般只在仪表内部做基准用。
开关稳压电源的效率高,
电压范围宽,
输出电压相对稳定,
由于开关管工作
在开关状态,功耗小,所以开关电源的工作效率可达
80
﹪~
90
﹪。而通常的线
性调整式稳压电源的效率仅达
50
﹪左右
开关电源是近代普遍推广的稳压电源,比如现在电脑的
ATX
电源、笔记本
电脑电源适配器、
打印机电源、
手机充电器等等。
稳压电源是在负载功率变化时,
输出电压仍然保持固定的电压值。
开关电源也是稳压电源,
但稳压电源不能直接
称为开关电源。
八、开关电源如何调压和稳压?
方法如下:
调压:调节脉冲宽度(能量密度)来调压。
稳压:与参照值比较(比例控制)来稳压。
开关电源(英文:Switching Mode Power Supply),又称交换式电源、开关变换器,是一种高频化电能转换装置。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
九、开关电源电路原理图以及简单介绍?
本文主要讲了六款简单的开关电源电路设计原理图,24V 开关电源的工作原理是什么、24V 开关电源电路图等内容,下面就一起来看看吧~
▍简单的开关电源电路图(一)
简单实用的开关电源电路图
调整 C3 和 R5 使振荡频率在 30KHz-45KHz。输出电压需要稳压。输出电流可以达到 500mA. 有效功率 8W、效率 87%。其他没有要求就可以正常工作。
▍简单的开关电源电路图(二)
24V 开关电源,是高频逆变开关电源中的一个种类。通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!
24V 开关电源的工作原理是:
1. 交流电源输入经整流滤波成直流;
2. 通过高频 PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
3. 开关变压器次级感应出高频电压,经整流滤波供给负载;
4. 输出部分通过一定的电路反馈给控制电路,控制 PWM 占空比,以达到稳定输出的目的。
24v 开关电源电路图
▍简单的开关电源电路图(三)
单端正激式开关电源的典型电路如下图所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管 VT1 导通时,VD2 也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管 VT1 截止时,电感L通过续流二极管 VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管 VD2,它可以将开关管 VT1 的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于 50%。
由于这种电路在开关管 VT1 导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出 50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
▍简单的开关电源电路图(四)
推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管 VT1 和 VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在 100-500 W范围内。
▍简单的开关电源电路图(五)
在开关电源中电源反馈隔离电路由光电耦合器如 PC817 以及并联稳压器 TL431 所组成,其典型应用如下图所示。当输出电压发生波动时,经过电阻分压后得到取样电压与 TL431 中的 2.5V 带隙基准电压进行比较,在阴极上形成误差电压,使光耦合器件中的 LED 工作电流生产相应的变化,在通过光耦合器件去改变 TOPSwitch 控制端的电流大小,进而调节输出占空比,使 Uo 保持不变,达到稳压目的。
反馈回路中主要元件的作用及选择:R1R4R5 主要作用是配合 TL431 和光耦合器件工作,其中 R1 为光耦的限流电阻,R4 及 R5 为 TL431 的分压电阻,提供必须工作电流以完成对 TL431 保护。
▍简单的开关电源电路图(六)
电路以 UC3842 振荡芯片为核心,构成逆变、整流电路。UC3842 一种高性能单端输出式电流控制型脉宽调制器芯片,相关引脚功能及内部电路原理已有介绍,此处从略。AC220V 电源经共模滤波器 L1 引入,能较好抑制从电网进入的和从电源本身向辐射的高频干扰,交流电压经桥式整流电路、电容 C4 滤波成为约 280V 的不稳定直流电压,作为由振荡芯片 U1、开关管 Q1、开关变压器 T1 及其它元件组成的逆变电路。逆变电路,可以分为四个电路部分讲解其电路工作原理。
1、振荡回路 开关变压器的主绕组 N1、Q1 的漏 -- 源极、R2(工作电流检测电阻)为电源工作电流的通路;本机启动电路与其它开关电源(启动电路由降压限流电阻组成)有所不同,启动电路由 C5、D3、D4 组成,提供一个“瞬态”的启动电流,二极管 D2 吸收反向电压,D3 具有整流作用,保障加到 U1 的 7 脚的启动电流为正电流;电路起振后,由 N2 自供电绕组、D2、C5 整流滤波电路,提供 U1 芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。
当然,U1 的 4 脚外接定时元件 R48、C8 和 U1 芯片本身,也构成了振荡回路的一部分。
电容式启动电路,当过载或短路故障发生时,电路能处于稳定的停振保护状态,不像电阻启动电路,会再现“打嗝”式间歇振荡现象。工作电流检测从电阻 R2 上取得,当故障状态引起工作过流异常增大时,U1 的 6 脚输出 PWM 脉冲占空比减小,N1 自供电绕组的感应电路也随之降低,当 U1 的 7 脚供电电压低于 10V 时,电路停振,负载电压为 0,这是过流(过载或短路)引发 U1 内部欠电压保护电路动作导致的输出中止;工作电流异常增大时,R2 上的电压降大于 1V 时,内部锁存器动作,电路停振,这是由过流引发 U1 内部过流保护动作导致输出中止。
2、稳压回路 开关变压器的 N3 绕组、D6、C13、C14 等元件组成的 24V 电源,基准电压源 TL1、光耦合器 U2 等元件构成了稳压控制回路。U1 芯片和 1、2 脚外围元件 R7、C12,也是稳压回路的一部分。实际上,TL1、U1 组成了(相对于 U1 内部电压误差放大器)外部误差放大器,将输出 24V 的电压变化反馈回 U1 的反馈电压信号输入端。当 24V 输出电压上升时,U1 的 2 脚电压上升,1 脚电压下降,输出 PWM 脉冲占空比下降,输出电路回落。当输出电压异常上升时,U1 的 1 脚下降为 1V 时,内部保护电路动作,电路停振。
3、保护回路 U1 芯片本身和 3 脚外围电路构成过流保护回路;N1 绕组上并联的 D1、R1、C9 元件构成了开关管的反向电压吸收保护电路,以提供 Q1 截止时的反向电流通路,保障 Q1 的工作安全;实质上稳压回路的电压反馈信号,也可看作是一路电压保护信号——当反馈电压幅度达一定值时,电路实施停振保护动作;24V 的输出端并联有由 R18、ZD2、单向晶闸管 SCR 组成的过压保护电路,当稳压电路失常,引起输出电压异常上升时,稳压二极管 ZD2 的击穿为 SCR 提供触发电流,SCR 的导通形成一个“短路电流”信号,强制 U1 内部保护电路产生过流保护动作,电路处于停振状态。
另外,推荐一款免费的报价软件——“报价优选”,内置上万套专业智能解决方案/报价单模板,所有的工程项目所要用到的表格和模板都能免费下载