返回首页

异步电动机的机械特性课件(异步电动机的机械特

来源:www.xrdq.net   时间:2023-01-01 15:42   点击:203  编辑:admin   手机版

1. 异步电动机的机械特性与哪些参量有关?

三相鼠笼异步电动机低频运行时的绕组感抗降低,只要合理相应降低电压,长期运行并无甚危害,仅是散热风叶转速偏慢,散热效果略差而已。

普通三相鼠笼异步电动机长期低频运行会因频率低使绕组温升提高,当温升超过绕组极限温升时会烧毁电动机绕组。需长期低频运行的电动机应选变频专用电动机这是为低频和高频下工作而设计的电动机外部有专用散热风机

2. 三相异步电动机的机械特性和哪几个参数有关

三相异步电动机的机械特性有固有的机械特性和认为的机械特性之分。

1、固有机械特性:它上面有4个特殊点。

(1)电动机在没有任何负载情况下的空转,此时转速最大,此点即电动机的理想空载点。

(2)电动机在有负载情况下的正常运转,此时为电动机的额定工作点。

(3)电动机在刚启动的时刻,即没有转起来,所克服转子自重时转矩的时候,此点为电动机的启动工作点。

(4)电动机在拖动负载最大转矩时,速度也比较适中时,此点位电动机的临界工作点。

在此时电压如果过低或有巨大冲击负载,就会造成电动机停机。

2、人为机械特性

(1)电压降低

电动机在运行时,如电压降低太多,会大大降低它的过载能力与启动转矩,甚至是电动机发生带不动负载或者根本不能启动的现象。此外就是启动后电机也会被烧坏。

(2)定子电路接入电阻,此时最大转矩要比原来的大;转子电路串电阻或改变定子电源频率,此时启动转矩要增大,最大转矩不变。

3. 异步电动机的机械特性与哪些参量有关系

互感器分为电压互感器和电流互感器两大类,其主要作用有:将一次系统的电压、电流信息准确地传递到二次侧相关设备;将一次系统的高电压、大电流变换为二次侧的低电压(标准值)、小电流(标准值),使测量、计量仪表和继电器等装置标准化、小型化,并降低了对二次设备的绝缘要求;将二次侧设备以及二次系统与一次系统高压设备在电气方面很好地隔离,从而保证了二次设备和人身的安全。

电压互感器   测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用微型电流互感器主要要求: 1.绝缘可靠,2.足够高的测量精度,3.当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。保护用电流互感器保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。电流互感器   利用变压器原、副边电流成比例的特点制成。其工作原理、等值电路也与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。由于副边接近于短路,所以原、副边电压U1和都很小,励磁电流I0也很小。电流互感器运行时,副边不允许开路。因为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为单相,三相星形和不完全星形。组合互感器   组合互感器是将电压互感器、电流互感器组合到一起的互感器。组合互感器可将高电压变化为低电压,将大电流变化为低电流,从而起到对电能计量的目的。钳形互感器   钳形电流互感器是一款精密电流互感器(直流传感器),是专门为电力现场测量计量使用特点设计的。该系列互感器选用高导磁材料制成,精度高。线性优。抗干扰能力强等。使用时可以直接夹住母线或母排上无须截线停电其使用十分方便。Q8O系列钳形电流互感器已多次被铁道部门使用检测目前D字开头列车上高频电流信号。交流电流变换器,它可配合多种测量仪器,电能表现场校验仪、多功能电能表、示波器、数字万用表、双钳式接地电阻测试仪、双钳式相位伏安表等, 可在电力不断电状态下,对多种电参量进行测量和比对。零序互感器   零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。作用:当电路中发生触电或漏电故障时,保护动作,切断电源。使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。零序电流互感器采用ABS工程塑料外壳、全树脂浇注成密封,有效避免了互感器在长期使用过程中的锈蚀。绝缘性能好,外形美观。具有灵敏度高、线性度好运行可靠,安装方便等特点。其性能优于一般的零序电流互感器,使用范围广泛,不仅适用于电磁型继电保护,还能适用于电子和微机保护装置。

4. 什么是异步电动机的固有机械特性和人为机械特性

异步电动机的机械特性有固有的机械特性和认为的机械特性之分。

1、固有机械特性:它上面有4个特殊点。

(1)电动机在没有任何负载情况下的空转,此时转速最大,此点即电动机的理想空载点。

(2)电动机在有负载情况下的正常运转,此时为电动机的额定工作点。

(3)电动机在刚启动的时刻,即没有转起来,所克服转子自重时转矩的时候,此点为电动机的启动工作点。

(4)电动机在拖动负载最大转矩时,速度也比较适中时,此点位电动机的临界工作点。

在此时电压如果过低或有巨大冲击负载,就会造成电动机停机。

2、人为机械特性

(1)电压降低

电动机在运行时,如电压降低太多,会大大降低它的过载能力与启动转矩,甚至是电动机发生带不动负载或者根本不能启动的现象。此外就是启动后电机也会被烧坏。

(2)定子电路接入电阻,此时最大转矩要比原来的大;转子电路串电阻或改变定子电源频率,此时启动转矩要增大,最大转矩不变

5. 异步电动机的机械特性是指

YSG系列辊道用变频调速三相异步电动机按其机械特性可以分为YSGa型和YSGb型两种。

YSGa型电动机的机械特性较软,具有堵转转矩大、堵转电流小、动态常数高的特点,可以在满电压下直接起动,并实现频繁起动、制动及反转运行;采用变频控制时,可以在30~80Hz的范围内调速运行。主要用于驱动以S5工作制运行的工作辊道辊子。YSGb型电动机具有较硬的机械特性,变频调速性能好,可以实现5~50Hz恒转矩、50~80Hz恒功率这样一个宽广的调速范围。主要用于以S1工作制运行的输送辊道辊子,当采用变频控制时,利用变频器的低频起动功能和制动功能,还可以实现频繁起、制动和正、反转,用于以S5工作制运行的工作辊道辊子

6. 交流异步电机的机械特性分为

异步电动机在额定电压和额定频率下,用规定的接线方式,定子和转子电路中的不串联任何电阻或电抗时的机械特性称为固有(自然)机械特性。异步电动机的机械特性与电动机的参数有关,也与外加电源电压、电源频率有关,将关系式中的参数人为地加以改变而获得的特性称为异步电动机的人为机械特性。比如,改变电风扇的档位,就改变了电机的电压,转速发生了变化。

  在同一转差率情况下,人为特性与固有特性的转矩之比等于电压的平方之比。因此在绘制降低电压的人为特性时,是以固有特性为基础,在不同的S处,取固有特性上对应的转矩乘降低电压与额定电压比值的平方,即可作出人为特性曲线:

7. 简述异步电动机的特点

三相异步电动机的机械特性是指电动机的转速n与电磁转矩Tem之间的关系。由于转速n与转差率S有一定的对应关系,所以机械特性也常用Tem=f(s)的形式表示。三相异步电动机的电磁转矩表达式有三种形式,即物理表达式、参数表达式和实用表达式。

物理表达式反映了异步电动机电磁转矩产生的物理本质,说明了电磁转矩是由主磁通和转子有功电流相互作用而产生的。

参数表达式反映了电磁转矩与电源参数及电动机参数之间的关系,利用该式可以方便地分析参数变化对电磁转矩的影响和对各种人为特性的影响。

实用表达式简单、便于记忆,是工程计算中常采用的形式。

电动机的最大转矩和启动转矩是反映电动机的过载能力和启动性能的两个重要指标,最大转矩和启动转矩越大,则电动机的过载能力越强,启动性能越好。三相异步电动机的机械特性是一条非线性曲线,一般情况下,以最大转矩(或临界转差率)为分界点,其线性段为稳定运行区,而非线性段为不稳定运行区。

固有机械特性的线性段属于硬特性,额定工作点的转速略低于同步转速。

人为机械特性曲线的形状可用参数表达式分析得出,分析时关键要抓住最大转矩、临界转差率及启动转矩这三个量随参数的变化规律。

8. 异步电动机的机械特性与哪些参量有关

由于被测参量种类繁多,其工作原理和使用条件又各不相同,因此传感器的种类和规格十分繁杂,分类方法也很多。现将常采用的分类方法归纳如下:  1、按输入量即测量对象的不同分:如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。

2、按工作(检测)原理分类

检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传感器等。

3、按照传感器的结构参数在信号变换过程中是否发生变化可分为:

  

a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料(敏感元件)本身的物理或化学性质的变化而实现信号变换的。

b、结构型传感器:依靠传感器机械结构的几何形状或尺寸(即结构参数)的变化而将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,实现信号变换,从而检测出被测信号。

如:电容式、电感式、应变片式、电位差计式等。

4、根据敏感元件与被测对象之间的能量关系(或按是否需外加能源)来分:

a、能量转换型(有源式、自源式、发电式):在进行信号转换时不需要另外提供能量,直接由被测对象输入能量,把输入信号能量变换为另一种形式的能量输出 使其工作。有源传感器类似一台微型发电机,它能将输入的非电能量转换成电能输出,传感器本身勿需外加电源,信号能量直接从被测对象取得。因此只要配上必要 的放大器就能推动显示记录仪表。

如:压电式、压磁式、电磁式、电动式、热电偶、光电池、霍尔元件、磁致伸缩式、电致伸缩式、静电式等传感器。

b、能量控制型(无源式、他源式、参量式):在进行信号转换时,需要先供给能量即从外部供给辅助能源使传感器工作,并且由被测量来控制外部供给能量的变 化等。对于无源传感器,被测非电量只是对传感器中的能量起控制或调制作用,得通过测量电路将它变为电压或电流量,然后进行转换、放大,以推动指示或记录仪 表。配用测量电路通常是电桥电路或谐振电路。

如:电阻式、电容式、电感式、差动变压器式、涡流式、热敏电阻、光电管、光敏电阻、湿敏电阻、磁敏电阻等。

5、按输出信号的性质分:

a、模拟式传感器:将被测非电量转换成连续变化的电压或电流,如要求配合数字显示器或数字计算机,需要配备模/数(A/D)转换装置。

上面提到的传感器基本上属于模拟传感器。

b、数字式传感器:能直接将非电量转换为数字量,可以直接用于数字显示和计算,可直接配合计算机,具有抗干扰能力强,适宜距离传输等优点。

目前这类传感器可分为脉冲、频率和数码输出三类。如光栅传感器等。

6、按照传感器与被测对象的关联方式(是否接触)可分为:

  

a、接触式:如:电位差计式、应变式、电容式、电感式等;

b、非接触式:接触式的优点是传感器与被测对象视为一体,传感器的标定无须在使用现场进行,缺点是传感器与被测对象接触会对被测对象的状态或特性不可避免地产生或多或少的影响。非接触式则没有这种影响;

7、按传感器构成来分:

a、基本型传感器:是一种最基本的单个变换装置。

b、组合型传感器:是由不同单个变换装置组合而构成的传感器。

c、应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。

8、按作用形式来分:

按作用形式可分为主动型和被动型传感器。

9、按传感器的特殊性来分:

  

上面介绍的分类是传感器的基本类型,按特殊性可分以下类型:

按检测功能可分为检测温度、压力、温度、流量计、流速、加速度、磁场、光通量等的传感器;

按传感器工作的物理基础可分为机械式、电气式、光学式、液体式等;

按转换现象的范围可分为化学传感器、电磁学传感器、力学传感器和光学传感器;

按材料可分为金属、陶瓷、有机高分子材料、半导体传感器等;

按应用领域分为工业,民用、科研、医疗,农用,军用等传感器;

按功能用途分为计测用、监视用、检查用,诊断用、控制用,分析用等传感器。

顶一下
(0)
0%
踩一下
(0)
0%