返回首页

异步电动机直接转矩控制(异步电动机直接转矩控

来源:www.xrdq.net   时间:2022-12-27 18:22   点击:110  编辑:admin   手机版

1. 异步电动机直接转矩控制和矢量控制的区别

1、矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,对电动机在励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

基于转差频率的矢量控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。

无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂。

2、直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。

2. 异步电动机直接转矩控制和矢量控制的区别是什么

直接转矩控制转矩特性好,即零速满转矩输出,转矩响应快,但是无编码器低速运行不稳定。

矢量控制低速特性好,但是转矩特性没有直接转矩控制好,低频转矩输出,转矩响应都相对差点。

3. 异步电动机直接转矩控制系统

转矩

使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n

电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿米(Nm),工程技术中也曾用过公斤力米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。

三相异步电动机的转矩公式为:

S R2

M=C U12 公式 [2 ]

R22+(S X20)2

C:为常数同电机本身的特性有关; U1 :输入电压 ;

R2 :转子电阻; X20 :转子漏感抗; S:转差率

可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。

转矩的类型

转矩可分为静态转矩和动态转矩。

静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。

静止转矩的值为常数,传动轴不旋转;

恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩;

缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的;

微脉动转矩的瞬时值有幅度不大的脉动变化。

动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。

根据转矩的不同情况,可以采取不同的转矩测量方法。

4. 异步电机直接转矩控制仿真

直接转矩控制系统与矢量控制系统都采用转矩和磁链分别控制。矢量控制系统强调转矩 与转子磁链的解耦,有利于分别设计转速与磁链调节器;实行连续控制,调速范围宽,可达1:100; 按定向时受电机转子参数影响,降低了适应性。 直接转矩控制系统则直接进行转矩砰-砰控制,避开了旋转坐标变换;控制定子磁链,而不是转子磁链,不受转子参数的影响;不可避免地产生转矩脉动,降低了调速性能,因此只适用于风机、水泵以及牵引传动等对调速范围要求不高的场合。矢量控制是通过矢量坐标变换将异步电动机的转矩控制与直流电动机的转矩控制统一起来的,可见,矢量坐标系是实现矢量控制的关键 特点与性能 直接转矩控制系统 矢量控制系统 磁链控制 定子磁链 转子磁链 转矩控制 砰-砰控制,脉动 连续控制,平滑 旋转坐标变换 不需要 需要 转子参数变化影响 无 有 调速范围 不够宽 较宽

5. 异步电动机直接转矩控制仿真

异步电动机的转动原理,是三相定子绕组产生旋转磁场,转子绕组切割旋转磁场产生感应电流,载流导体在旋转磁场中受电磁力偶矩的作用,跟着旋转磁场一起转动。

需要注意的是,转子转速永远小于旋转磁场转速。其转速差用转差率来衡量。

当电机启动时,转子不动,转差率最大等于1,转子电流最大,此时的电磁转矩被称为启动转矩

6. 异步电动机转矩和转速的关系

电机的级数确定了电机的同步转速。例:4级电机4级电机电机1分钟同步转速转速={电源的频率(50Hz)×60秒}÷(电动机的级数÷2)=3000÷2=1500转;

在工厂中,经常听到说电机是几级的,要想弄明白,首先要知道极是什么概念:极指的是发电机转子在转子线圈通入励磁电流之后形成的磁极。简单地说就是转子每转一圈在定子的线圈的一匝中能感应形成几个周期电流不同的极数要产生50hz电势就需要不同的转速;

50HZ*60秒/分(即3000)除以极数就是电机每分钟的转的圈数。 电动机也是一样的道理,只是发电机的一个逆过程;

极数反映出电动机的同步转速,2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min;

可以这样理解:2极是基数(为3000),4极就只能除2,6极就除3,8极就除4。而不是说2极还要用3000去除2;

机的极对数越多,电机的转速就越低,但它的扭距就越大。

7. 直接转矩控制与矢量控制区别

变频器控制方式

  低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。

  1 U/f=C的正弦脉宽调制(SPWM)控制方式

  其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

  2 电压空间矢量(SVPWM)控制方式

  它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

  3 矢量控制(VC)方式

  矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果

8. 同步电机直接转矩控制

1、扭矩控制,就是电机电流的控制,电机电流的大小决定负载力矩,是电机拖动负载时电机自己控制的;

2、当速度越快扭力越小的负载,随着速度的增大负载力矩减小,电机电流会自动减小;

3、速度的控制,就是电机电源频率、电压的控制,通过变频器人为可以控制;

4、当速度越快扭力越大的负载,例如水泵、风机负载,随着速度的提高力矩增大电流自动增大;

5、这里特别要注意一点,负载力矩小,电机的电流就减小,减小电机转矩,拖动负载运动,这个过程是电机的本能,不是别人控制的,谁也控制不了!

6、这里特别要注意一点,负载力矩大,电机的电流就增大,增大电机转矩,拖动负载运动,这个过程是电机的本能,不是别人控制的,谁也控制不了!

7、电机的电流闭环控制时,负载力矩小,电流不能低于给定值,电机的频率、电压会自动上升,增大负载速度增大负载力矩;

8、电机的电流闭环控制时,负载力矩大,电流不能超过给定值,电机的频率、电压会自动下降速度下降,降低负载力矩;

9、如果碰到减速力矩增大的负载,电流闭环控制的结果肯定是到停车;

10、如果碰到增速力矩减小的负载,电流闭环控制的结果肯定是到电机同步最高或发电运行。

通过改变电压来控制电压的功率

一种是电子式的,是用一只双向可控硅来改变功率,特点是成本低、体积小,很轻。缺点是利用可控硅的导通角来调节电压,输出的不是正弦波电流,会产生大量的谐波,使收音机、音响等受到很大的干扰。

另一种是利用铁芯电感的不同抽头,即改变与电机电路串联的电感的感抗,来改变电机的电压,进行调速。优点是利用电抗来分压,没有谐波产生,对其它电器没有干扰。缺点是利用铁芯电感,笨重,电感要消耗一些电量。

9. 异步电动机的转矩与什么有关

转矩使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。

此外,转矩与功率的关系T=9549P/n电机的额定转矩表示额定条件下电机轴端输出转矩。

转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿??米(N??m),工程技术中也曾用过公斤力??米等作为转矩的计量单位。

电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK。三相异步电动机的转矩公式为:SR2M=CU12公式[2]R22+(SX20)2C:为常数同电机本身的特性有关;

U1:输入电压;

R2:转子电阻;

X20:转子漏感抗;

S:转差率可以知道M∝U12转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。

也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。

这时电动机转速又趋于新的稳定值。转矩的类型转矩可分为静态转矩和动态转矩。

静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。

静止转矩的值为常数,传动轴不旋转;恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩;缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的;微脉动转矩的瞬时值有幅度不大的脉动变化。

动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。

振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。

根据转矩的不同情况,可以采取不同的转矩测量方法。

顶一下
(0)
0%
踩一下
(0)
0%