1. 电机波形图
正弦波电机好
优点:1、全程静音。2、线性普遍比方波控制器好。3 、波形更符合电机工作原理,爬坡重载加速下电机效率更高。
缺点:匹配麻烦;价格比方波控制器高;本身耗电比方波控制器高;正弦波电压利用率在85%~90%左右,无法跑出电机极速,更高速度需配合弱磁功能。
2. 电的波形图
交流电可以通过整流直接转成直流电,根据整流方式的不同,输出直流电压会有些区别,应根据具体的用电设备调整电压、电流及滤波稳压。 220V正弦交流电经半波整流可得到220V×0.45=99V的直流电; 220V正弦交流电经全波、桥式整流可得到220V×0.9=198V的直流电; 整流出的直流电输出端加上足够大的滤波电容,都能使直流电压上升到交流峰值300V左右。
3. 伺服电机波形图
原因:
第一,电机上电,机械振荡(加/减速时)引发此类故障的常见原因有:①脉冲编码器出现故障。此时应检查伺服系统是否稳定,电路板维修检测电流是否稳定,同时,速度检测单元反馈线端子上的电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器;②脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节;③测速发电机出现故障。修复,更换测速机。维修实践中,测速机电刷磨损、卡阻故障较多,此时应拆下测速机的电刷,用纲砂纸打磨几下,同时清扫换向器的污垢,再重新装好。
第二.电机上电,机械运动异常快速(飞车)出现这种伺服整机系统故障,应在检查位置控制单元和速度控制单元的同时,还应检查:①脉冲编码器接线是否错误;②脉冲编码器联轴节是否损坏;③检查测速发电机端子是否接反和励磁信号线是否接错。一般这类现象应由专业的电路板维修技术人员处理,负责可能会造成更严重的后果。
第三.主轴不能定向移动或定向移动不到位出现这种伺服整机系统故障,应在检查定向控制电路的设置调整、检查定向板、主轴控制印刷电路板调整的同时,还应检查位置检测器(编码器)的输出波形是否正常来判断编码器的好坏(应注意在设备正常时测录编码器的正常输出波形,以便故障时查对)。
第四.坐标轴进给时振动应检查电机线圈、机械进给丝杠同电机的连接、伺服系统、脉冲编码器、联轴节、测速机。
第五.出现NC错误报警NC报警中因程序错误,操作错误引起的报警。如FANUC6ME系统的Nc出现090.091报警,原因可能是:①主电路故障和进给速度太低引起;②脉冲编码器不良;③脉冲编码器电源电压太低(此时调整电源15V电压,使主电路板的+5V端子上的电压值在4.95-5.10V内);④没有输人脉冲编码器的一转信号而不能正常执行参考点返回。第六。伺服系统报警伺服系统故障时常出现如下的报警号,如FANUC6ME系统的416、426、436、446、456伺服报警;STEMENS880系统的1364伺服报警;STEEMENS8系统的114、104等伺服报警,此时应检查:①轴脉冲编码器反馈信号断线、短路和信号丢失,用示渡器测A、B相一转信号,看其是否正常;②编码器内部故障,造成信号无法正确接收,检查其受到污染、太脏、变形等。
4. 电动机波形图
1.转子不平衡引发的共振
转子不平衡是指电机转子的质量中心偏离回转中心(偏心)。由于偏心质量和偏心距的存在,在电机旋转时产生离心力,从而引起与转速同频的振动。不平衡是旋转机械常见的振动故障原因。通常是由于工厂制造原因没有达到平衡精度;转子长时间运行产生的不均匀磨损、腐蚀、变形和不均匀结垢沉积;转子部件脱落或卡阻;或者由于外部联轴器、带轮、风扇不平衡等原因造成。
2.转子对中不良引发的共振
转子不对中主要包含轴系不对中和轴承不对中两种情况。电机转子轴和负载轴之间通常采用联轴器连接,所以轴系不对中主要是指联轴器不对中。当对中不良时,电机轴和负载轴之间会产生轴向和径向交变的附加力矩,从而引发电机振动。造成不对中的主要原因有设备安装精度不足;设备受力或者受热膨胀发生变形;安装基础沉降等。
3.机械松动引发的共振
松动包括旋转松动和非旋转松动。电机地脚螺丝连接力矩不足引起的松动是典型的非旋转松动。松动可在松动的方向上产生振动,方向性非常强。旋转松动主要是旋转件和固定件之间配合关系被破坏,间隙超差引起的松动。轴承磨损是典型的旋转松动。
5. 三相电机波形图
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。 变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。 对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。
6. 电机的波形
变频电机只不过就是用了一种调速的手段,利用频率不同改变,输入的电压不同,以此达到电机功率的不同最后输出速度不同。
正弦波电机是输出给电机的波形是正弦波的波形,其特点是有很小的噪音,与调速无关。由于两者没有可比的内容,因此无法进行比较。
7. 电机的波形图
电机窜动,又称轴向窜动,英文为axial endplay,是指电机的轴在工作中沿轴线方向不可避免的微小移动。
电机轴向蹿动会使电机的震动、噪音变大,危害设备,降低使用寿命。
一般来说是转子轴与转子配合间隔过大是引起电机窜动的原因。在轴承外沿和端盖之间加波形垫圈进行调整、避免电机受轴向力、定期检修等措施可以预防电机蹿动。而质量原因造成轴蹿动则无法预防。
8. 直流电机波形图
理想状态的直流电的波形应该就是一条直线,但那只是理想状态,在现实中是不可能实现的,现实中直流电的波形应该是脉动的,也就是说它的波形可以尽量的近似一条直线,但不可能是纯的直线,不知道这样你能明白不?
9. 交流发电机波形图
这不是矢量图。
是正弦波形图。纵轴表示电压或电流,横轴表示时间(角度),它可以直观地表示出电源各相在任何时刻的瞬时值和各相线之间的电压变化关系。只看一条曲线就是单相电源的波形图。线电压U12=U1-U2,U23=U2-U3......可以证明同样是正弦曲线。在任一瞬间它们的代数和等于0。矢量图是从原点水平画一线段,线段末端画一箭头。线段长度代表电压、电流值的大小,箭头表示矢量方向。再从原点逆时针旋转120°、240°分别画两条相同或不等长(如三相不平衡电流)线段。线段在纵轴上的投影即是电压、电流的瞬时值。将线段平移或垂直移动,首尾相接可组合成一个闭合三角形,即矢量和等于0。两线段首尾之间的直连线就是线间电压。