1. 超声电机技术与应用pdf
我觉得,如果不是有抓拍需求,没有必要专门找超声波马达的镜头去买。只有专门拍体育或是新闻抓拍的情况下,超声波马达才有用武之地。
超声波马达对焦快,可以全时手动对焦,用起来肯定方便,但是重量和价格都是问题。
有这个钱,不如买几个定焦慢慢玩。
摄影重要的不是器材,而是人。
拍体育的话,或是拍野生动物,拍鸟,这些领域必须买,不是的话,真不值得花这个钱。
附上百度百科介绍:
超声波马达(UltraSonic Motor)的简称是:USM,最早应用于照相机上是Canon EF系列镜头。最早装备了USM马达的镜头是Canon EF 300/2.8L USM.传统的马达都是基于电磁原理工作的,将电磁能量变换成转动能量。而USM则是基于利用超声波振动能量变换成转动能量的全新原理来工作的。
一般来说环形超声波马达主要用于L级专业镜头,而微型超声波马达则主要被用于我们所说的业余镜头中,但在佳能的业余镜头中也有使用环形超声波马达的镜头,它们是:EF20-35mm f/3.5-4.5 USM; EF24-85mm f/3.5-4.5 USM; EF28-105mm f/3.5-4.5 USM/ EF28-105mm f/3.5-4.5 USM II; EF28-135mm f/3.5-5.6 IS USM和EF100-300mm f/4.5-5.6 USM,这样作为普通摄影爱好者的我们如使用上述几款镜头也能感受环形超声波马达带来的宁静、高速的自动对焦和全时手动的乐趣。
微型马达,除了弧形马达和超声波马达外,佳能还有另外一种马达—微型马达,微型马达一般用于佳能价格很低的普及镜头中,如EF50mm f/1.8II和那些非USM的普及型变焦镜头,如EF28-80mm f/3.5-5.6; EF75-300mm f/4-5.6等,但佳能有一款“很有名”的镜头也用的是微型马达,它就是EF100mm f/2.8 Macro微距镜头,想来佳能认为一般使用微距的人是不会使用自动对焦的吧。
全时手动和内对焦/后对焦在佳能EF镜头中的应用
一般来说,使用环形超声波马达的镜头都可以实现全时手动,而使用微型超声波马达的镜头则不行,但这并不表明微型超声波马达不能实现全时手动,比如著名的EF50mm f/1.4使用的就是微型超声波马达,但它和那些使用环形超声波马达的镜头一样,也可以全时手动,所以我们可以说佳能为了保持环形超声波马达的“优越性”不愿意将全时手动这一个非常有用的功能赋予所有的微型超声波马达。
使用环形超声波马达的镜头一般都是采用内对焦或后对焦结构的,因此在对焦时镜头的前镜片是不会跟着转动的,而大多微型超声波马达和微型马达和许多使用弧形马达的镜头则不行,当然也有例外如使用弧形马达的EF135mm f/2.8 Soft Focus柔焦镜头,EF24mm f/2.8和已经被EF17-35mm f/2.8 L USM取代的EF20-35mm f/2.8 L等早期上市的EF镜头。
2. 超声电机原理演示
压电电动机是利用压电材料在施加电场后形状改变的原理而制成的电动机。有的压电电动机利用了逆压电效应,即材料为了线性或转动运动而发生声学的或者超声的振动。在另一种机制里,单板的延伸被用来产生一系列的伸展和定位,就像毛毛虫的前进机制一样。
压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。
3. 什么叫超声电机
EF系列镜头一共使用有四种马达,它们分别是: 环形超声波:Ring-type-USM——这是EF系列中最先进的马达,速度、噪音、准确性、机械性、耗电量等各项指标都是最优异的,而且也是唯一可以支持“全时手动”(FTM)的马达,任何时候都可以通过对焦环进行手动对焦,哪怕是自动对焦正在工作的时候用于高中档次的定变焦镜头。 微型超声波:Micro-USM——这是EF系列的第二种超声波马达,性能逊于环形超声波,但仍然比其他马达要强。它与环形超声波马达最明显的区别是它不能支持“全时手动”(FTM)。用于低档次的变焦镜头。 弧形马达:AFD——这是一种普通的无轴马达。不能支持“全时手动”(FTM)。多用于较高档次的非超声波镜头。 微型马达:MM(Micro-Motor)——这是传统的带传动轴的马达。比较费电。不支持“全时手动”(FTM)。多用于廉价的低档次镜头。 Canon在EF系列镜头的马达使用上,基本是遵从一个原则的:他把Ring-USM与AFD,作为较高档次的搭配,应用在高档“L”级镜头与中档镜头中,而将Micro-USM与MM马达作为低档次的搭配,应用在低档镜头中。 高级“L”镜头,使用的超声波马达一定是“环型超声波”Ring-USM的;如果不用超声波,那么就一定用 AFD马达(这种往往是比较旧的款式,新款式的“L”头几乎全部都是Ring-USM的); 中档镜头中的变焦镜头与使用了超声波马达的定焦镜头全部都是使用“环型超声波”Ring-USM的;定焦镜头中不使用超声波马达的,用的也是AFD马达;唯一的一个例外:中档定焦微距镜头EF100/2.8Macro用的是MM马达。 低档镜头中,超声波马达一定是用“微型超声波马达”(Micro-USM)的,不用超声波马达则一定是用MM马达的。 最后,利用“环型超声波马达”(Ring-USM)的镜头一般都使用了内/后对焦技术,所以对焦时镜身长度不变,前组镜片不转;而使用“微型超声波马达”(Micro-USM)的镜头在对焦时,镜身长度会变化,前组镜片也会跟着旋转。 了解了各个镜头分别使用什么样的马达,我们就不难大致了解一支镜头的机械性能。一般来说,体育赛场、野外写生、剧院舞台等场合,Ring-USM的轻、快、准是最适合不过的;一般日用场合,Micro-USM也可以胜任。人像、微距等以摆拍为主的需要精细对焦的场合,AF相对显得不那么重要的,用AFD/MM马达也就可以了。这也是为什么,EF100/2.8Macro会使用MM马达,EF135/2.8Softfocus会使用AFD马达的原因了。
4. 超声电机驱动电路
能清洗超声清洗中,一般被超声波清洗过的大型超导线圈直接进入烘干箱进行烘干,没有预除水的装置,线圈绕制将对超导导体进行校直、超声清洗、喷砂、弯曲成形、匝间绝缘包绕及落模等操作,从而满足超导高精度尺寸等要求,是超导磁体制造中最重要的步骤之一。
5. 超声电机的工作原理
超声波在液体中传播,使液体与清洗槽在超声波频率下一起振动,液体与清洗槽振动时有自己固有频率,这种振动频率是声波频率,所以人们就听到嗡嗡声。随着清洗行业的不断发展,越来越多的行业和企业运用到了超声波清洗机。
目前市场上超声波清洗机的慢拉脱水机构中,采用了电动配齿轮,用链条直接拉动慢拉托架上升或下降,然而在上升或下降过程中出现了此等不足:在电机齿轮传动链条时,就会发生摩擦振动,直接导致慢拉托架抖动,使慢拉脱水困难,脱水率低下。
6. 超声电机技术与应用_赵淳生
赵淳生说,我干任何事情,不希望半途而废,要坚持下去!
嫦娥三号、四号探测器上,用上了赵淳生团队研制的超声电机:在光谱仪“下班时”及时关闭,以储存能量,减少月尘。这是我国自主研制的超声电机在航天领域首次成功应用,意味着我国超声电机技术达到国际先进水平。
7. 超声电机技术与应用下载
超声波马达与步进马达相比,具有结构简单、小型轻量、响应速度快,噪声低、低速大转矩、控制特点好、断电自锁、不受磁场干扰,运动准确等优点,另外还具有耐低温、真空等适应太空环境的特点。
首先由于质量轻,低速且大转矩从而不需要附加齿轮等变速结构,避免了使用齿轮变速而产生的震动、冲击与噪声、低效率、难控制等一系列问题;
其次它突破了传统电机的概念,没有电磁绕组和磁路,不用电磁相互作用来转换能力,而是利用压电陶瓷的逆压电效应、超声振动和摩擦耦合来转换能量。从而实现了安静、污染小;定位精度高;不受电磁干扰等优点。可以说超声波电机技术处于世界上最新高科技之一。
8. 超声电机技术与应用
按驱动方式不同 ,压电驱动器可分为刚性位移驱动器和谐振位移驱动器。
1 刚性位移驱动器
刚性位移驱动器的驱动模式主要有多层式驱动器和单(双) 晶片驱动器 ,此外还有 Rainbow 驱动器、Moonie 驱动器和 Cymbals 驱动器等 ,几种模式在大小、质量、位移量及负载能力上均各有特点。
2 谐振位移驱动器
谐振位移驱动器(超声波电机)种类繁多 ,从毫米级的微型电机到厘米级的小型电机;从单自由度的直线电机到多自由度的平面电机和球型电机;从原理上基于摩擦的超声波电机到利用声悬浮的非接触式超声波电机;从高的蠕动式电机到无磨损的压电 ———电流复合型步进电机。按照工作原理 ,可将超声波电机分为接触式和非接触式两种。