1. 步进电机设计三要素
伺服,控制器,编程控制
2. 步进电机的设计
1、可以用单片机+全集成步进电机驱动芯片来整全应用,这样比较简单,控制上很方便。用普通的51单片机像AT89C2051或STC12C1052+THB7128或THB6064这类芯片来组合就可以了。
2、单片机根据输入来决定输出的脉冲数量,让步进电机驱动芯片转化成功率信号驱动步进电机。
3、因为是一个脉冲走一步的,所以输出的脉冲数还要考虑到细分数的问题,固定转动步数、角度的程序还是比较容易编。像1.8度的步进电机,2细分时,转一圈就需要400个脉冲,转半圈只需要200个脉冲,转90度只需要100个脉冲,如此类推。
4、程序的话,固定一个适当的频率,按键触发启动定时器,然后在定时中断里取反一个IO端口做脉冲输出,再放入一个累加变量做计算,算脉冲数量,是取反两次输出一个完整的脉冲,在主程序中设定一个需要的脉冲数量来作为条件控制定时器的开启和关闭,然后循环等待条件满足
5、如果想把控制、驱动、和步进电机都整合在一起,比较麻烦,小电机还好,大电机的干扰是个问题。
3. 步进电机特点概括
1、如载荷稳定,特别是力较大且无大的波动,低速情况选用步进电机更好(结合导程细分),并且价格相对还能低一点;
2、受力不稳,或波动范围较大,虽速度低也宜选用伺服电机,目前伺服电机价格已大幅下降至跟步进电机差距不太大了。
综述,步进电机细分能达到所述要求,如为1的情况,步进电机的工作特征更符合。(目前有一种盲目推崇伺服电机的风气,实则需根据使用情况定,而不是根据所谓“档次”)
4. 步进电机硬件设计
1个步进电流1.5A在空载或轻载下实际是达不到这个电流的所以,你24V1.5A的电源也可以驱动,但你要是多个1.5A的步进电机,则需要X*1.5A*1.2倍电流的电源来驱动。。设你要驱动4个的话就是4*1.5*1.2=7.2A 后面1.2是安全预量,防止瞬间电流过大烧坏开关电源。也就是说至少保证6A的电源,建议-7.5A
你就是3000A的电源,用1个0.0003A的电机都没事,只是太浪费。
5. 步进电机设计方案
外接引线5根,其中之一为公用线,接12V(+)。
其它四根,分别为A,B,C,D。以次接12V(-),
通电次序:(每变一次走一步)
正向:AB--BC--CD--DA--AB--
反向:AB--DA--CD--BC--AB--
驱动线路,有专用集成电路:UCN5804B,
也可由74系列加2003搭成。
6. 步进电机的选用原则
步进好一些
步进电机转矩的选择 步进电机的保持转矩,近似于传统电机所称的“功率”。当然,有着本质的区别。步进电动机的物理结构,完全不同于交流、直流电机,电机的输出功率是可变的。 通常根据需要的转矩大小(即所要带动物体的扭力大小),来选择哪种型号的电机。
7. 步进电机控制程序设计三要素
步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。三大要素确定,步进电机的型号便确定下来了。
8. 步进电机设计思路
1、步进电机动作的话要靠驱动器来驱动的,步进电机也叫脉冲电机,给一个脉冲转一个角度。
12V的话要控制要先买个开关电源,把220V变成12V接到驱动器,再用驱动器控制电机,还要
一个外部给脉冲的控制器(单片机或者PLC)给驱动器脉冲信号。
2、根据控制信号运动,一个脉冲信号走一步,步进角则根据固有参数计算,比如以5相步进电
机为例,采用基本步进角即无细分,则每给一个脉冲信号,步进电机运转0.72°,500脉冲一
圈。所以当脉冲的频率越高时,步进电机的运转速度越快,依次计算即可。
步进电机驱动器概述:
1、可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲
频率来控制电机转动的速度和加速度,从而达到调速和定位的目的。
2、是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步
进电机按设定的方向转动一个固定的角度,它的旋转是以固定的角度一步一步运行的。
步进电机驱动器基本原理:
1、采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机
步进转动。四相步进电机按照通电顺序的不同,分为单四拍、双四拍、八拍三种方式。
2、单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与
双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
9. 步进电机电路设计
1、将步进电机驱动器脉冲输入信号和方向输入信号的正极连接到表控的5V端子。
2、将步进电机驱动器脉冲输入信号的负端连接到表控的Y1输出端子上。
3、将步进电机驱动器方向输入信号的负端连接到表控的Y2输出端子上。
4、接下来就是设置步进电机驱动器的细分,一般可以放在8(1600)左右,通过初步调试后设置实际需要的细分。
5、设置步进电机的正转设置,参考设置,一行实现正转。X1是正转的启动开关。
6、步进电机反转的设置:X2是反向启动开关,Y1输出脉冲,Y2输出方向信号。两行实现反转动作。
10. 步进电机系统设计
步进电机的控制策略:
1、PID控制
PID控制作为一种简单而实用的控制方法,在步进电机驱动中获得了广泛的应用。它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),将偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。文献将集成位置传感器用于二相混合式步进电机中,以位置检测器和矢量控制为基础,设计出了一个可自动调节的PI速度控制器,此控制器在变工况的条件下能提供令人满意的瞬态特性。文献根据步进电机的数学模型,设计了步进电机的PID控制系统,采用PID控制算法得到控制量,从而控制电机向指定位置运动。最后,通过仿真验证了该控制具有较好的动态响应特性。采用PID控制器具有结构简单、鲁棒性强、可靠性高等优点,但是它无法有效应对系统中的不确定信息。
目前,PID控制更多的是与其他控制策略相结合,形成带有智能的新型复合控制。这种智能复合型控制具有自学习、自适应、自组织的能力,能够自动辨识被控过程参数,自动整定控制参数,适应被控过程参数的变化,同时又具有常规PID控制器的特点。
2、自适应控制
自适应控制是在20世纪50年代发展起来的自动控制领域的一个分支。它是随着控制对象的复杂化,当动态特性不可知或发生不可预测的变化时,为得到高性能的控制器而产生的。其主要优点是容易实现和自适应速度快,能有效地克服电机模型参数的缓慢变化所引起的影响,是输出信号跟踪参考信号。文献研究者根据步进电机的线性或近似线性模型推导出了全局稳定的自适应控制算法,这些控制算法都严重依赖于电机模型参数。文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精确的位置控制和较高较平稳的转速。
目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的最大化补偿及伺服系统低速高精度的跟踪控制性能。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。
3、矢量控制
矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制,从而获得良好的解耦特性,因此,矢量控制既需要控制定子电流的幅值,又需要控制电流的相位。由于步进电机不仅存在主电磁转矩,还有由于双凸结构产生的磁阻转矩,且内部磁场结构复杂,非线性较一般电机严重得多,所以它的矢量控制也较为复杂。文献[8]推导出了二相混合式步进电机d-q轴数学模型,以转子永磁磁链为定向坐标系,令直轴电流id=0,电动机电磁转矩与iq成正比,用PC机实现了矢量控制系统。系统中使用传感器检测电机的绕组电流和转自位置,用PWM方式控制电机绕组电流。文献推导出基于磁网络的二相混合式步进电机模型,给出了其矢量控制位置伺服系统的结构,采用神经网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿,通过最大转矩/电流矢量控制实现电机的高效控制。
4、智能控制的应用
智能控制不依赖或不完全依赖控制对象的数学模型,只按实际效果进行控制,在控制中有能力考虑系统的不确定性和精确性,突破了传统控制必须基于数学模型的框架。目前,智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制、神经网络和智能控制的集成。
4.1模糊控制
模糊控制就是在被控制对象的模糊模型的基础上,运用模糊控制器的近似推理等手段,实现系统控制的方法。作为一种直接模拟人类思维结果的控制方式,模糊控制已广泛应用于工业控制领域。与常规控制相比,模糊控制无须精确的数学模型,具有较强的鲁棒性、自适应性,因此适用于非线性、时变、时滞系统的控制。文献[16]给出了模糊控制在二相混合式步进电机速度控制中应用实例。系统为超前角控制,设计无需数学模型,速度响应时间短。
4.2神经网络控制
神经网络是利用大量的神经元按一定的拓扑结构和学习调整的方法。它可以充分逼近任意复杂的非线性系统,能够学习和自适应未知或不确定的系统,具有很强的鲁棒性和容错性,因而在步进电机系统中得到了广泛的应用。文献将神经网络用于实现步进电机最佳细分电流,在学习中使用Bayes正则化算法,使用权值调整技术避免多层前向神经网络陷入局部极小点,有效解决了等步距角细分问题。