返回首页

步进电动机的载荷(步进电动机在带负载下的启动

来源:www.xrdq.ne   时间:2022-12-29 15:37   点击:133  编辑:admin   手机版

1. 步进电动机在带负载下的启动频率

步进电机通直流电,电机轴有锁死的感觉,这是合理的。如果按照正确的时序通了脉冲电流,电机还不转,那就根据不转的现象判断原因了。

不转的原因排除了电路接错、接触不良、程序错误之类的原因外,最大可能就是:脉冲频率太高。步进电机要从较低的频率启动,然后才能慢慢加速到较高频率。

电机的电流太小而负载太大,一般步进电机驱动芯片有设置电流大小的,或则从控制芯片的PWM输出端控制PWM占空比来加大电流。

控制芯片的输出端口驱动能力不足,步进电机驱动芯片无法检测到输入。尤其是有光耦隔离的情况下,要用上拉电阻加大端口输出能力。

2. 步进电动机的连续运行频率和它的负载转矩

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:

(1)计算齿轮的减速比

根据所要求脉冲当量,齿轮减速比i计算如下:

i=(φ.S)/(360.Δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲)

S ---丝杆螺距(mm)

Δ---(mm/脉冲)

(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)

式中Jt ---折算至电机轴上的惯量(Kg.cm.s2)

J1、J2 ---齿轮惯量(Kg.cm.s2)

Js ----丝杆惯量(Kg.cm.s2) W---工作台重量(N)

S ---丝杆螺距(cm)

(3)计算电机输出的总力矩M

M=Ma+Mf+Mt (1-3)

Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)

式中Ma ---电机启动加速力矩(N.m)

Jm、Jt---电机自身惯量与负载惯量(Kg.cm.s2)

n---电机所需达到的转速(r/min)

T---电机升速时间(s)

Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)

Mf---导轨摩擦折算至电机的转矩(N.m)

u---摩擦系数

η---传递效率

Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)

Mt---切削力折算至电机力矩(N.m)

Pt---最大切削力(N)

(4)负载起动频率估算。数控系统控制电机的启动频率与负载转矩和惯量有很大关系,其估算公式为

fq=fq0[(1-(Mf+Mt))/Ml)÷(1+Jt/Jm)] 1/2 (1-7)

式中fq---带载起动频率(Hz)

fq0---空载起动频率

Ml---起动频率下由矩频特性决定的电机输出力矩(N.m)

若负载参数无法精确确定,则可按fq=1/2fq0进行估算。

(5)运行的最高频率与升速时间的计算。由于电机的输出力矩随着频率的升高而下降,因此在最高频率 时,由矩频特性的输出力矩应能驱动负载,并留有足够的余量。

(6)负载力矩和最大静力矩Mmax。负载力矩可按式(1-5)和式(1-6)计算,电机在最大进给速度时,由矩频特性决定的电机输出力矩要大于Mf与Mt之和,并留有余量。一般来说,Mf与Mt之和应小于(0.2 ~0.4)Mmax.

3. 步进电动机在带负载下的启动频率是多少

进电机起动后,当控制脉冲频率连续上升而维持不失步的最高频率,称为运行频率。通常给出的也是空载情况下的运行频率。

当电机带羊一定的负载运行时,运行频率与负载转矩大小有关,两者的关系称为运行矩频特性,在技术数据中通常也是发表格或曲线形式表示。

提高运行频率对于提高生产率和系统的快速性具有很大的实际意义。

由于运行频率比起动频率要高得多,所以使用时常通过自动升、降频控制线路先在低频(不大于起动频率)下使电机起动,然后逐渐升频到工作频率使电机处于连续运行,升频时间一般不大于1秒。

PPS是每秒脉冲数,PPS 300而N.CM 120是指脉冲频率300HZ式力矩120ncm

4. 步进电机的连续运行频率()起动频率

可以考虑一下是不是相序的问题,有可能是接触不良。或者是驱动器本身有问题。你的现象不像是干扰,干扰的话只是速度不正常。如果是单片机控制的,那就有可能是相序分配的程序没写好!

在启动或加速时如果步进脉冲变化太快,转子由于惯性而跟随不上电信号的变化,产生堵转或失步在停止或减速时由于同样原因则可能产生超步。为防止堵转、失步和超步,提高工作频率,要对步进电机进行升降速控制。

步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步力矩而启动的,为了不发生失步,启动频率是不高的。

5. 步进电动机连续运行时,为什么频率越高

  不同型号的步进电机使用不同的驱动器所能达到的最高转速是不一样的。

  所谓步进电机,就是根据控制信号运动,一个脉冲信号走一步,步进角则根据固有参数计算,比如以5相步进电机为例,采用基本步进角即无细分,则每给一个脉冲信号,步进电机运转0.72°,500脉冲一圈。所以当脉冲的频率越高时,步进电机的运转速度越快,比如脉冲频率为500赫兹,则一秒转一圈,依次计算即可。若牵涉到细分了,则根据细分后的步进角计算即可。

  通过调节输入驱动器的脉冲频率以及驱动器的细分参数来达到调节步进电机转速,实际是控制单位时间内步进电机的步数。相比于异步电机,步进电机1000转/分就相当于高速运转了,1000转/分对于步进电机实际意义。步进电机转速上升时伴随着扭矩的下降,当步进电机扭矩下降到一定程度时,自身的扭矩已经不能带动其自身的重量,导致电机停止。

  通过实验实际测量了一款28步进电机的转速:

步进电机:28BYG250-34(0.06nm,3.9V,0.75A)

步进驱动器:ZD-8731(0-2A ,1、2、4、16细分)

控制器:MC-10(调速范围0-20K)

开关电源:S-35W-24V

  测试结果:实际空载转速最大值:7600rpm(此为空载时最大转速),这个型号的步进电机竟然能上7000转/分的速度,可见步进电机的空载转速与其扭矩和自重的关系是多么密切。

6. 步进电机空载启动频率

最高转速1000/分钟。

   步进电机应用于低速场合,每分钟转速不超过1000转,所以适用的最高转速就是1000转。步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。

7. 步进电机启动频率与哪些因素有关

电机的启动频率对生产厂家来说指的是自启动频率,因为客户带上负载后,负载的大小千差万别。自启动频率指的是,按照固定的频率(不是慢慢加上去的频率)让电机启动,电机所能启动起来的最高的频率。

比如说,先按120PPS发,如果可以起来,再按130PPS发,如果起不来,就可以再试125PPS,如果可以起来,再试126PPS,起不来了,那么125PPS就是这个步进电机的自启动频率了。这个参数只能大概说明电机启动能力,带负载启动的情况会更复杂,通常都会通过编程进行加减速启动。

8. 步进电动机在带负载下的启动频率什么空载时的启动频率

主电机都有以下几种● 控制电动机

1无刷直流电动机

无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。

无刷直流电机为了减少转动惯量,通常采用“细长”的结构。无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。

这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。

2 步进电动机

所谓步进电动机就是一种将电脉冲转化为角位移的执行机构;更通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。我们可以通过控制脉冲的个数来控制电机的角位移量,从而达到精确定位的目的;同时还可以通过控制脉冲频率来控制电动机转动的速度和加速度,从而达到调速的目的。目前,比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。

步进电动机和普通电动机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电动机可以和现代的数字控制技术相结合。但步进电动机在控制精度、速度变化范围、低速性能方面都不如传统闭环控制的直流伺服电动机;所以主要应用在精度要求不是特别高的场合。由于步进电动机具有结构简单、可靠性高和成本低的特点,所以步进电动机广泛应用在生产实践的各个领域;尤其是在数控机床制造领域,由于步进电动机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以一直被认为是最理想的数控机床执行元件。

除了在数控机床上的应用,步进电机也可以用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。

此外,步进电动机也存在许多缺陷;由于步进电机存在空载启动频率,所以步进电机可以低速正常运转,但若高于一定速度时就无法启动,并伴有尖锐的啸叫声;不同厂家的细分驱动器精度可能差别很大,细分数越大精度越难控制;并且,步进电机低速转动时有较大的振动和噪声。

3伺服电动机

伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。

伺服电动机有直流和交流之分;最早的伺服电动机是一般的直流电动机,在控制精度不高的情况下,才采用一般的直流电机做伺服电动机。目前的直流伺服电动机从结构上讲,就是小功率的直流电动机,其励磁多采用电枢控制和磁场控制,但通常采用电枢控制。

旋转电机的分类,直流伺服电动机在机械特性上能够很好的满足控制系统的要求,但是由于换向器的存在,存在许多的不足:换向器与电刷之间易产生火花,干扰驱动器工作,不能应用在有可燃气体的场合;电刷和换向器存在摩擦,会产生较大的死区;结构复杂,维护比较困难。

交流伺服电动机本质上是一种两相异步电动机,其控制方法主要有三种:幅值控制、相位控制和幅相控制。

一般地,伺服电动机要求电动机的转速要受所加电压信号的控制;转速能够随着所加电压信号的变化而连续变化;电动机的反映要快、体积要小、控制功率要小。伺服电动机主要应用在各种运动控制系统中,尤其是随动系统。

4力矩电动机

所谓的力矩电动机是一种扁平型多极永磁直流电动机。其电枢有较多的槽数、换向片数和串联导体数,以降低转矩脉动和转速脉动。力矩电动机有直流力矩电动机和交流力矩电动机两种。

其中,直流力矩电动机的自感电抗很小,所以响应性很好;其输出力矩与输入电流成正比,与转子的速度和位置无关;它可以在接近堵转状态下直接和负载连接低速运行而不用齿轮减速,所以在负载的轴上能产生很高的力矩对惯性比,并能消除由于使用减速齿轮而产生的系统误差。

交流力矩电动机又可以分为同步和异步两种,目前常用的是鼠笼型异步力矩电动机,它具有低转速和大力矩的特点。一般地,在纺织工业中经常使用交流力矩电动机,其工作原理和结构和单相异步电动机的相同,但是由于鼠笼型转子的电阻较大,所以其机械特性较软。

5开关磁阻电动机

开关磁阻电动机是一种新型调速电动机,结构极其简单且坚固,成本低,调速性能优异,是传统控制电动机强有力竞争者,具有强大的市场潜力。

● 功率电动机

1 直流电动机

直流电动机是出现最早的电动机,大约在19世纪末,其大致可分为有换向器和无换向器两大类。直流电动机有较好的控制特性直流电动机在结构、价格、维护方面都不如交流电动机,但是由于交流电动机的调速控制问题一直未得到很好的解决方案,而直流电动机具有调速性能好、起动容易、能够载重起动等优点,所以目前直流电动机的应用仍然很广泛,尤其在可控硅直流电源出现以后。

2 异步电动机

异步电动机是基于气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩而实现能量转换的一种交流电机。异步电动机一般为系列产品,品种规格繁多,其在所有的电动机中应用最为广泛,需量最大;目前,在电力传动中大约有90%的机械使用交流异步电动机,所以,其用电量约占总电力负荷的一半以上。

异步电动机具有结构简单,制造、使用和维护方便,运行可靠以及质量较小,成本较低等优点。并且,异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电动机主要广泛应用于驱动机床、水泵、鼓风机、压缩机、起重卷扬设备、矿山机械、轻工机械、农副产品加工机械等大多数工农生产机械以及家用电器和医疗器械等。

在异步电动机中较为常见的是单相异步电动机和三相异步电动机,其中三相异步电动机是异步电动机的主体。而单相异步电动机一般用于三相电源不方便的地方,大部分是微型和小容量的电机,在家用电器中应用比较多,例如电扇、电冰箱、空调、吸尘器等。

3 同步电动机

所谓同步电动机就是在交流电的驱动下,转子与定子的旋转磁场同步运行的电动机。同步电动机的定子和异步电动机的完全一样;但其转子有“凸极式”和“隐极式”两种。凸极式转子的同步电动机结构简单、制造方便,但是机械强度较低,适用于低速运行场合;隐极式同步电动机制造工艺复杂,但机械强度高,适用于高速运行场合。

同步电动机的工作特性与所有的电动机一样, 同步电动机也具有“可逆行”,即它能按发电机方式运行,也可以按电动机方式运行。

同步电动机主要用于大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机以及小型、微型仪器设备或者充当控制元件;其中三相同步电动机是其主体。此外,还可以当调相机使用,向电网输送电感性或者电容性无功功率。

●信号电机

1 位置信号电机

目前,最有代表性的位置信号电机:旋转变压器、感应同步器和自整角机。

旋转变压器本质上是可以随意改变一次绕组和二次绕组耦合程度的变压器。其结构和绕线式异步电动机相同,定子和转子各有两组相互垂直的分布绕组,转子绕组利用滑环和电刷与外电路联接。当一次绕组励磁以后,二次绕组的输出电压和转子的转角成正弦、余弦、线性或者其他函数关系,可以用于计算装置中的坐标变换和三角运算,还可以在控制系统中作为角度数据传输和移相器使用。

感应同步器是一种高精度的位置或角度检测元件,有圆盘式和直线式两种。圆盘式感应同步器用来测量转角位置;而直线式感应同步器用来测量线位移。

自整角机是一种感应式机电元件,被广泛地应用于随动系统中,作为角度传输、变换和指示的装置。在控制系统中经常两台或者多台联合使用,使机械上互不相连的两根或多根轴能够自动地保持相同的转角变化,或者同步旋转。

2 速度信号电机

最有代表性的速度信号电机是测速发电机,其实质上是一种将转速变换为电信号的机电磁元件,其输出电压与转速成正比。从工作原理上讲,它属于“发电机”的范畴。测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。

测速发电机有直流和交流之分;而直流测速发电机又有他励和永磁之分,其结构和工作原理与小功率直流发电机相同,通常输出功率较小,作为计算元件时要求其输出电压的线性误差和温度误差低于一个上限。而交流测速发电机又有同步和异步之分;同步测速发电机包括:永磁式、感应式和脉冲式;异步测速发电机应用最广泛的是杯型转子异步测速发电机。

为了提高测速发电机的精确度和可靠性,目前,直流测速发电机出现了无刷结构的霍尔效应直流测速发电机。因为这种霍尔效应无刷直流测速发电机是一种无齿槽、无绕组的电机,所以它不会产生由于齿槽而存在的“齿槽谐波电势”,这种电机结构简单,便于小型化。

顶一下
(0)
0%
踩一下
(0)
0%